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Abstract

We present an explicit formula for the mean curvature of a unit vector
field on a Riemannian manifold, using a special but natural frame. As
applications, we treat some known and new examples of minimal unit
vector fields. We also give an example of a vector field of constant mean
curvature on the Lobachevsky (n + 1) space.
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Introduction

Let (M, g) be an n + 1 — dimensional Riemannian manifold with metric g. A
vector field £ on it is called holonomic if £ is a field of normals of some family
of regular hypersurfaces in M and non-holonomic otherwise. The foundation
of the classical geometry of unit vector fields was proposed by A.Voss at the
end of the nineteenth century. The theory includes the Gaussian and the mean
curvature of a vector field and their generalizations (see [1] for details). Here
we will consider a unit vector field from another point of view. Namely, let
T1 M be the unit tangent sphere bundle of M endowed with the Sasaki metric
[16]. If £ is a unit vector field on M, then one may consider ¢ as a mapping
& : M — T M so that the image (M) is a submanifold in T3 M with the metric
induced from T3 M. H.Gluck and W.Ziller [10] called & a minimal vector field
if £(M) is of minimal volume with respect to induced metric. They considered

the unit vector field on S tangent to the fibers of a Hopf fibration $3 552
and proved that these (Hopf) vector fields are unique ones with global minimal
volume. Note that this result is not true for greater dimensions where Hopf
vector fields are still critical points for the volume functional but do not provide
the global minimum among all unit vector fields [14, 15]. The local aspect of
the problem was considered first in [8]. The authors have found the necessary
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and sufficient condition for a unit vector field to generate locally a minimal
submanifold in the tangent sphere bundle. In fact, that condition implies that
the mean curvature of the submanifold (M) is zero. Using that criterion, a
number of examples of local minimal vector unit fields have been found ( see
lab2 [3, 4, 11, 12, 17, 18]).

In this paper, we give an explicit formula for the mean curvature of £(M)
using some special but natural normal frame for £(M) and give an example of a
unit vector field of constant mean curvature on a Lobachevsky space. We shall
state the main result after some preliminaries.

Let V denote the Levi-Civita connection on M. Then Vx¢ is always or-
thogonal to £ and hence, (VE)(X) = Vx&: T,M — pr is a linear operator at
each p € M. We define the adjoint operator (V&)*(X) : fj; — T, M by

(V' X,Y), = (X, Vy&),

Then there is an orthonormal frame eg,eq,..., e, in T,M and an orthonormal
frame f1,..., fn in §pl such that

(V&)(eo) =0, (VE)(ea) = Aafas (VE)"(fa) = Aatas a=1,...,n,

where A1 > Ay > -+ > )\, > 0 are the singular values of V&. As we will see, the
vectors

n —#(—Ageg—i—f;’), oc=1,...,n,

N v

where H and V are the horizontal and vertical lifts respectively, form an or-
thonormal frame in the normal bundle of £(M).
Furthermore, we introduce the notation

T(X, Y)f = vayf - vayf.

Then R(X,Y), =7(X,Y)¢ — r(Y, X){ , where R is the Riemannian curvature
tensor. Now we are able to state our main result.

Theorem 2.5 Let H,| be the components of the mean curvature vector of
&E(M) with respect to the orthonormal frame fi,. Then

(TL + 1)HU| =
1 " (r(ea€a)E, fo) + Aora(R(€q,€0)E, fo))
m{<r(60760)§’ f0>+; 1+Ag‘ }

The following very simple example gives a unit vector field of constant mean
curvature.

Proposition 3.6.1 Let M be the Lobachevsky 2-plane with the metric

ds® = du® + 2" dv?.



Let X1 = {1,0} and X5 = {0,e7“}. Then £ = coswX; + sinwXs, where
w = au + b, generates a hypersurface E(M) C Ty M of constant mean curvature

a

22+ a2’

Index convention. Throughout the paper we take i, j,k,... =0,...,n and
a,B,...=1,...,n.

1 Basic concepts from the geometry of the unit
tangent sphere bundle.

Let (u?,...,u™) be a local coordinate system on M and let §/0u’ be the vectors
of a natural frame on M™. The points of the tangent bundle T'M are the pairs
Q = (Q,¢), where Q € M and ¢ € TogM. Each point Q € TM is uniquely
determined by the set of parameters (u®, ..., u"; &%, ... "), where (u?; ..., u")
fix the point @Q and {£°,...,£"} are the coordinates of & with respect to the
frame {0/0u®,...,0/0u™}. The local coordinates (u®,...,u";&0,..., €M) are
called natural induced coordinates in the tangent bundle. Each smooth tangent
vector field & = £(uY,...,u") generates a smooth submanifold (M) C TM
having a parametric representation of the form

u’ u?,
{ gz — gi(uo’.”’un)‘ (1)

Setting |¢] = 1, we get a submanifold in the unit tangent sphere bundle £&(M™) C
T M™.

A natural Riemannian metric on the tangent bundle has been defined by
S.Sasaki [16]. We describe it in terms of the connection map.

The tangent space TQTM can be split into vertical and horizontal parts:

TQTM" = HQTM" S VQTM".

The vertical part VQTM is tangent to the fiber, while the horizontal part is
transversal to it. For X € TQTM” we have

X = X'9/ou’ + X"H9 /¢! (2)
with respect to the natural frame {9/0u?,d/9¢'} on TM.

Let m : TM — M be the projection map. It is easy to check that the
differential 7, : TsTM — ToM of the mapping 7 acts on X as follows:

X = X'0/0u’, (3)

and is a linear isomorphism between VsT'M and ToM.



The connection map K : TQTM — ToM acts on X by
KX = (X" + T, 0 X")0/0u (4)

and it is a linear isomorphism between HQTM and TgM. Moreover, it is easy
to see that VQTM = kerm,, HQTM = ker K. The images 71*5( and KX are

called horizontal and vertical projections of X, respectively.
_ The Sasaki metric on TM is defined by the following scalar product: if
XY € TaTM, then

(X, Y))g=(mX,mY) + (KX ,KY), (5)

where <, >q is the scalar product with respect to the metric g on the initial

manifold (the base space of tangent bundle). Horizontal and vertical subspaces
are mutually orthogonal with respect to Sasaki metric.
The inverse operations of projections (3) and (4) are called lifts. Namely, if
X € TgM™, then
X" =X'9/ou' — T, X 9/0¢"

is in HyT'M and is called the horizontal lift of X, and
XV = X'9/0¢!

is in Vi3T'M) and is called the vertical lift of X.

Among all lifts of various vectors from ToM into T(q ¢)T'M, one can nat-
urally distinguish two of them, namely ¢# and ¢. The vector field ¢¥ is the
geodesic flow vector field, while ¢V (being normalized) is a unit normal vector
field of TYM C T'M.

In the geometry of the unit tangent sphere bundle it appears to be convenient
to introduce the notion of tangential lift [5]:

X=XV —(X,6)¢". (6)

In other words, the tangential lift is the projection of the vertical lift onto the
tangent space of T1 M.

We denote by V the Levi-Civita connection of the Sasaki metric on Ty M.
In terms of horizontal and tangential lifts we then have [5]:

Vxn Y = (VxY)7 - J(R(X,Y)E)!, VYT = L(R(E X)Y)T, (7)
VxaY'=(VxY) +L(R(&,Y)X)?, VYV =—(Y,£)X"

Remark 1.1 It is evident that if Z 1 &, the vertical and tangential lifts of
Z coincide, particulary (Vx¢)' = (Vx§)V for any X. We will use this fact
throughout the paper without special comments.



2 The mean curvature formula for a unit vector
field

2.1 The structure of tangent and normal bundles of £(M)

Let & be the unit tangent vector field on M. We denote by T¢(M) the tangent
bundle of £&(M) C Ty M. The structure of T{(M) can be described as follows:

Lemma 2.1 The vector X € Tiq.ey)T1 M is tangent to £(M) at (Q,€) if and

only if
X = X"+ (Vxg)" (8)

where X € T M.

Proof. Using the local representation (1) of £&(M), we consider the coordi-
nate frame of T(g ¢)§(M):

- RUSS
el{O,...,l,o,...,o,8ui7~..78ui}.

Let X € T(q,ey)TM be tangent to £(M). Then

X =X'g
Applying (3) and (4), we obtain
W*éi = 6/81#,
Ke;, = V¢

From this we get -~

7r*)~( = Xia/aui,
KX = V, &

Setting X = 7, X and taking into account the remark, we get (8).
[

To describe the structure of the normal bundle of (M), we use the adjoint
covariant derivative operator. As £ is a fixed unit vector field, Vx& can be
considered as a pointwise linear operator (V) : TogM — &1, where ¢4 is the
orthogonal complement of & in T M, acting as

(VE(X) = Vx&.

The matrix of this operator is formed by the covariant derivatives V;&*.
The adjoint covariant derivative linear operator (V&)* : ¢+ — ToM can be
defined in a standard way:



for each X € ¢+. The matrix of (V&)* has the form
(V)]s = g™ V& g

As V is the Riemannian connection for g, we obtain for (V&)* the formally
transposed matrix

(V&) = Vigk.

Now the structure of £(M) can be described as follows:

Lemma 2.2 The vector N € Tq,e) Ty M is normal to (M) if and only if
N =—[(VE)*N" + NV
where N € TgM and N L €.

The proof follows easily from (5), (8) and (9)

2.2 Second fundamental form of {(M) in T\ M

We denote by Q 5 the second fundamental form of £(M) in Ty M™ with respect to
the normal vector field N defined in Lemma 2.2. Then the following statement
holds.

Lemma 2.3 For X,Y being tangent to (M) we have

1

§<T(X, YV)E+ (Y, X)E = Ve vxoy+rEvyoxé N),

where 1(X,Y)§ = VxVy€& — Vy,v¢

Q5 (X,Y) =

Proof. By definition we have
Qs (X Y) <<V Y N>>

where X,Y € T(q,6)§(M). Using Lemma 2.1, we put X=X"4(Vx&)V; v =
YH 4+ (Vy€)V. Then applying (7) and (6), we have

ViV = Vxn e (Y +(VyE)) =

[VxY + LR(E, VXY + LR(E VyE)X]™ + [VxVyé — LR(X, V)] =
[VxY + LR(E, Vx€)Y + LR VyO)X]" + [VxVyé — JR(X,V)E] —
(VxVy¢, §>
Let N be orthogonal to £&. Then N = — [(Vf)*N]H + NV is normal to £(M).
Therefore



(X, 7) = ~(VxY + LRIE VXY + LR(E VyE)X, (VE)'N) +

(VxVyé - %R(X, Y){,N) =

1
(VxVyé— SBXY)E = Vo, v it re vaov+irEvr xS N). (10)
To simplify the expression (10), we introduce the following tensor r:
T(X,Y)fZVXVyg—vayf. (11)

Then for the Riemannian tensor, we get
R(X,Y)§ =r(X,Y){—r(Y,X){

and (10) can be rewritten as

(X, ¥) = L(r(X,V)E+ (Y, X0t~ Vi xoynevroxé N).  (12)
[
Next, we determine the components of Q with respect to some special frame.
As (V€) : TgM — ¢+ and (VE)* : ¢+ — ToM are mutually adjoint, then in
ToM and &1, respectively, there exist orthonormal frames {eg,e1,...,e,} and
{f1,.-, fn} such that
(V&eo = 0,

V§)
(Vg)ea = /\a fa )
(v£) “fa = Aata,

where A\, > A1+ > A1 > 0is a set of singular values (functions) of the linear
operator VE. Then

60 == 60 5
Lo T v ey (3
form an orthogonal frame of the tangent space of T ¢)§(M) while
1
Ny = ——— (\oed — 1V 14
m( U U) ( )

form the orthonormal frame in &(M)+.

Lemma 2.4 The components of second fundamental form of (M) C Ty M with
respect to the frames (18) and (14) are given by

e}l

cloo = \/m{< €0, €0 6 fo’>}
\/HT\/HT{< €a; €0 £+r(607604)£ fa>+)\ )\ <R(60760)£afa>},

o}l

olal0

= N

o}l

oclag — 3 \/1+>\2 \/1+>\2 \/1+)\2 {<T ea,65)5+7“(6576a)€ fo’>
+>\a)\a'<R 6076[3)5 foz>+)‘[3)‘ <R(ea76a)£ fﬁ>}

where o, o, 6 =1,...,n




Proof. R
Indeed, with respect to (13) and (14) the components of 2 are

Qah’k = Qi (&, én).
Using (12), we have
1

~ 1
Qolike = QWQ(% er)E +1(ek, )6 = VR V., e)er tREV., e fo)-

Setting 7 = k = 0 and applying (13), we get

Qo'|00 m{<r €0, €0 f fo>}

Setting i = a, k = 0 and applying (13) again, we obtain

Qa\ao = %\/H-T{< €a5 €0 f f0> < <607ea>57f0> - <VR(§,(V§)ea)eof7fo>} =
%\/HT{< €as €0 f fa> < (60a6a)§7f<7>+)‘a/\a<R(60760)§7fa>}-

Finally, setting ¢ = «, k = 8 applying again (13), we obtain

Qojap = %\/% {(r(ea; es)é +r(ep, ea)é=
VR(E,(VE) (a))es + RE(VE) (en)eals fo) } =
1

%\/@ {(r(eares)é + (e, ealé, fo)—

(AaR(&, fa)es + AsR(E, fa)ea, (VE) (fo))} =
s {(r(eaen)é +ren ca)é fo)-

Mo (R(E, fa)es, ea) = AgAa(R(E, fo)easea)} =

! - {{r(easep)é, fo) + (r(eg, €a)t, fo)+
)\a>\o<R(eaa 65)5, foz> + >\B/\J<R(em ea)ga f,5’>} .

So, the lemma is proved.

2.3 The mean curvature formula
Now we are able to prove the main result.

Theorem 2.5 The components of the mean curvature vector of (M) C ThM
with respect to the frames (13) and (14) are given by

(n + 1)Hg| =

1 7(€asea)é, fa>+/\ Ao < (eovea)gafa»
e 5 8 |




Proof. With respect to the frames (13) and (14) the matrix of the first
fundamental form G of (M) is

1 0 ... 0

3 0 1+ ... 0

G= (16)
0 0 ... 1+

For the inverse matrix we have

1 0 0
0 -5 ... 0

~ 1+A2

Gl=| | ot . . (17)
: : -
0 0 oY)

So we have

Q0\00 = \/lir7< (60360)5 fa>
ch\aa = \/117)\3[<T(60476a)£’f0'>+)\G)\Q<R(eo'7ea>€7fa>:|'

Taking (17)into account, we have:

HO' = ~iiQaii:
| (n+1)G !

6a,6a 5 fa+)‘ A R(eavea)f fa>
Z 14 A2 }

1
(n+1)y/1+ A2

So we get the result.

{< (60,60 6 fo'

2.3.1 Simplified formula for the mean curvature of a unit vector
field.

Tt is possible to simplify the formula (15). To do this, we introduce the following
notations:

Bk = (Vesejen),  Fijn = (Ve fis fu)s

where fq is supposed to be zero. Evidently, E;j;;, = —E;,; and Fjjj = —Fjj;-
Then it is simple to check that

(r(eiref)€, fr) = ei(Nj)djk + i Fijjn — M Eifji-
Therefore,

(r(ejs ))&, fi) = i (Xj)dij + X Fyji — NiEj i,

<7'( )f f]> ( )7

(r(ei, e5)€, fi) = ei(Nj)dij + X Fyyji — NiByji



From this it follows that
<R(€iaej)§7fj> = <7‘(€i7€j)§,fj> —(r(ej &), f) =
ei(Aj) — e;(A )5 )\ Fjji + A Eam (X + i) (Ejjij — Fyjig) =
ei(Nj) — (r(ejs ))& fi) — N+ X)) (Ejpji — Fyjjo)-
So, we see that
(r(ej ;)€ fi) = ei(Ng) — (N + X3)(Ejjji — Fjjji) — (Rlei,€5)€, f5)-
Finally, introducing the matrix G;; with the components

G\ = Eijij — Fjij,

ilj
we can rewrite the mean curvature formula as follows
(n + 1)H ol —

Z eo(Ai) - (Al + /\J)Gi\o + (AiAU - 1)<R(€U,6i)£, f1> (18)
\/1 + A2 = 1+ )2 ’

where A\g = 0 and fy = 0 is supposed.

3 Some special cases and examples

3.1 Normal vector field of a Riemannian foliation

We consider an important special case of a unit geodesic vector field £ such
that the orthogonal distribution &+ is integrable. In other words, suppose that
a given Riemannian manifold admits a Riemannian transversally orientable hy-
perfoliation. Then the following holds.

Theorem 3.1 Let M™t! admit a Riemannian transversally orientable hyperfo-
liation. Let & be a unit normal vector field of the foliation. Then the components
of the mean curvature vector of E(M) are

H _ _ea a (1_kak0)<R(£vea)eo¢aeo’>
0“_ TL+1 /1+k§a1 1+k'(21

where e, determine the principal directions and ko, are the principal curvatures
of the fibers.

Remark 3.2 The analogous problem was treated in [3], where the authors
considered the minimality condition for the vector field. The corresponding
conditions in [3] differ from the mean curvature components by a factor. We
refer to [6] for applications of this conditions.

10



Proof. For the given situation, the singular frame is simple. As £ is geodesic
vector field, we have eq = £, while the others are principal vectors of the second
fundamental form of the fibers. If we denote the corresponding shape operator
by Ag, then

Ve & = —Aceq = —kaeq

So, neglecting the condition on the A, to be positive (in fact, we never used this

condition in proof of the formula (18)), we may put f, = e, and A\, = —kq.
Therefore, in (18) we obtain G;; = 0 and the result follows immediately.
n

3.2 Strongly normal vector field.

A unit vector field ¢ is called normal if R(X,Y){ = af and strongly normal if
r(X,Y)¢ = af for all X,Y € ¢+, Our result (15) allows to prove easily [11]:

FEvery unit strongly normal geodesic vector field is minimal

Indeed, since § is geodesic, V€ = 0 and therefore eq = £. Hence, r(eg, e9)§ =
0and eq,...,e, € X fi,..., fn € 5. Evidently, a strongly normal vector
field is always normal. So, each term in (15) vanishes.

3.3 Geodesic vector fields on 2-dimensional manifolds

For dimM = 2 the mean curvature of £(M) C Ty M equals

1 re; e)é
e (s SRS 0

or

- 1 _ en e 61()\)
H—m{ <V60 05 1>>\+1+)\2}. (19)

The above formula allows to prove the following statement.

A unit geodesic vector field on a 2-dimensional manifold is minimal if and
only if it is strongly normal (see [11]).
Indeed, in this case we can set eg = &, f1 = £ey. So, up to a sign,

1
= W<T(el, 61)5, €1>

and the statement follows immediately.

In [11], the authors give an example of a geodesic but not strongly normal
vector field and hence not minimal. Here we can easily find the mean curva-
ture of that field. Namely, consider the 2-dimensional manifold of non-positive
curvature with metric

ds® = du® + e*"*dv?.

Set £ = {1,0}. Then, up to a sign, the singular frame is

eo =& and e; = {0,e" "’} = f1.

11



It is easy to see that
Ve, & = vey.
Hence A = v and e;(\) = e "?. So, the mean curvature of £(M) is given by

—uv

e
o1+ 0232

3.4 Examples of non-geodesic minimal vector fields on
some 2-dimensional Riemannian manifolds

Next, we consider a Riemannian 2-manifold M with the metric
ds® = du® + €29 du?.

As it was shown in [11] for the general situation, the vector field 9/du is minimal.
Here we shall consider the vector field which makes a constant angle with 9/0u
along each u - geodesic.

Proposition 3.4.1 Up to a sign, the mean curvature of the vector field & on a
2-dimensional Riemannian manifold with metric ds®> = du®+ €29 dv? which is
parallel along each u - geodesic, is

29w,y

H= 3/2°
2(1+ (9w, + 9)?)

where w(v) is the angle function of € with respect to the direction of u - geodesics.

Proof. Consider the mutually orthogonal unit vector fields X; = {1,0} and
X ={0,e79}. A direct calculation gives

Vx, X1 = 0, Vx, X2 = 0,
Vx,Xi = ¢Xo, Vx,Xo = —¢Xi.

Let w(u,v) be the angle function defining the vector field £ by
& =coswXi +sinwXy
Let n be a unit vector field orthogonal to &:
N = —sinwXj + coswXs.

Then
Vx, &= X1(w)n, Vx,&=—(Xa(w)+9')n.

Now, suppose & to be parallel along a u - geodesic, that is, set X;(w) = 0.

Then the singular frame is : eg = X7 and e; = X5. The singular function is
A= —(X2(w) + ¢’) and we see that, up to a sign, f1 coincides with 7. So
e1(A)

2(1 4 A2)3/2°

12



For e1(\) we obtain
e1(N) = Xo(—Xo(w) +¢') = —Xo(Xa(w)) + Xa(g') = —e 9wy,
since g does not depend on v. Therefore

e 29wy

3/2°
2(1+ (70w, +9')2)

H =

what was claimed.

From the above formula we conclude:

On a 2-dimensional manifold with metric ds* = du?+ 29" dv? the unit vec-
tor field Ewhich is parallel along u — geodesics, is minimal if its angle increment
along v — curves is not higher then the linear one.

Particularly, if w = const, then & is minimal.

3.5 The mean curvature of a general unit vector field on
2-dimensional manifolds

In the case of dimM = 2, the mean curvature of a unit vector field can be
expressed in terms of the geodesic curvature of integral curves of the given field
and their orthogonal trajectories.

Proposition 3.5.1 Let & and i be unit mutually orthogonal vector fields on a
2-dimensional Riemannian manifold. Denote by k and k the geodesic curvatures
of the integral curves of the field & and n, respectively. The mean curvature H
of the vector field & is given, up to a sign, by

1 =3¢ () ()|

Remark 3.3 The analogous expression can be found in [8] as a condition of
minimality of the unit vector field on 2-dimensional manifolds.

Proof. From (19) one can see that after the replacement £ — —¢ the mean
curvature H just changes its sign. Therefore, we may choose the direction of
& in such a way that it will be the field of principal normals of the n — curves.
The same arguments allow us to consider n as the field of principal normals of
the £ — curves. Denote by w an angle between ¢ and the field ey of the singular
frame. Then

eg = coswé + sinwn.

As V& =0, we have
coswVe€ +sinwVné = 0.

13



The Frenet formulas give

Ve€=kn, Vy&=—kn.

Therefore, we obtain
kcosw — ksinw = 0. (20)

Denote by e; and fi the other vectors of the singular frame. It is easy to
check that the change of directions of these vectors induces a sign change of H.
Therefore, we can always set fi = n and e; = £sinwé F coswn to satisfy the
equation V., & = Af; with A > 0. Taking all of this into account, set

ep = coswé + sinwn,
e1 = sinwé — coswr.

Then we have
Vo€ = coswVe +sinwV, £ =0,

Ve, & =sinwVe€ — coswV,§ = An.
From these equations we derive
Ve€ = Asinwn,
Vy€ = —Acoswn.
Comparing this with the Frenet formulas, we conclude that k = Asinw, k =

Acosw. Therefore,

N =k + K% sinw= coswzg (21)

k
A’

To use the formula (19), we should find e; (A) and <Vao €o, el>. Now, keeping
in mind (20), we have

) =N~ Kny

and
Veseo = coswVe(coswé +sinwn) +sinwVy(cosw + sinwn) =
—(€(w) cosw + n(w) sinw)e; — (kcosw — ksinw)e; =
—(&(sinw) — n(cosw))er.

Therefore, using (21), we get

s =5 (5) -0 (5)

Substituting these expressions into (19), we obtain

e D)
s (L 600 = FAE) = (1432 106) = A n(0)] =
o[ (o) (77w

14



Taking into account (21), we get what was claimed.

Corollary. If £ is a geodesic vector field then

7 10 K
o 2 do V14 K2
where o is the arc-length parameter of the orthogonal trajectories of the field £
and K is their geodesic curvature.

A unit geodesic vector field is said to be radial if it is a tangent vector field of
geodesics starting at a fixed point. Now we can confirm the following statement
[3].

Proposition 3.5.2 If each radial vector field on a 2-dimensional Riemannian
manifold M is minimal, then M has constant curvature.

Proof. Indeed, if such a vector field is minimal, then its orthogonal trajec-
tories are Gauss circles of constant geodesic curvature, which means that those
circles are Darboux ones. Therefore, M is of constant Gaussian curvature ( see

[2])-

3.6 Some examples of vector fields of constant mean cur-
vature.

3.6.1 The example on the Lobachevsky 2-space.
Consider the Lobachevsky plane L? with the metric
ds® = du® 4 e*“dv?.
The coordinate lines of L? are u -geodesics and their orthogonal trajectories.

Proposition 3.6.1 The unit vector field on L? whose angle function with re-
spect to u - geodesics is w = au + b (a,b = const) has constant mean curvature
_ a
C2V2+a?
Proof. Indeed, consider the field £ = coswX; 4 sinw Xy where w = au + b
and X; = {1,0}, Xy ={0,e *}. Then
Vx, X1=0, Vx X3=0,
Vx, X1 =Xs, Vx,Xo=-X1.
Now we define the singular frame for £. To do this, we introduce the vector field
n = —sinwX; 4+ coswXs,. Then
Vix, &= §2n = an,
VX2£ =1.

15



Therefore, setting
1
V1+a?

€y = (X1 — CLXQ), €1 = (aX1 + XQ),

1
V1+a?
we have

Vel =0, Vo, &=+vV1+a%n.
Hence, f1 =n and A = V1 + a? = const. So, e;(A\) = 0. Moreover,
a

——e.
V1+a? !

Veoeo = —

Substituting this into (19), we have

a

2/2+ a2’

So, the statement is proved.
[
3.6.2 The generalized examples on the Lobachevsky (n + 1)- space.

Consider the (n+1) - dimensional Lobachevsky space endowed with horospher-
ical coordinates (u,v!,...,v"™). Then

ds* = du® + e*[(dv")? + - - + (dv™)?].
Consider the unit vector fields
Xo={1,0,...,0}, X3 ={0,e7",...,0},..., X,, ={0,0,...,e"“}. (22)
It is easy to check that

VxgXo=0, VxyXa=0,
VxaXo=Xo VxaXa=—Xo

Define the unit vector field £ as follows:
&€ = cos Xy + sinf cosuX; + sinfsinuXy, (23)
where 6 € [0,7/2] is constant.

Proposition 3.6.2 The unit vector field which is given by (23) with respect to
the frame (22) on Lobachevsky (n+ 1) - space with the metric

ds® = du® + e*[(dv')? + - + (dv™)?],
1s a field of constant mean curvature. Namely, we have

n—2+/2sin6cosf
n+1 1+ cos?6
ny/2sin 6
2(n+1)°
Hyy =0 o2>3.

1l —

)

H2| -
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Proof.
With respect to the frame {Xo, X1,..., X, }, the matrix (V&) has the form

0 —sinfcosu —sinfsinu 0 0
—sinfsinu cosf 0 0 0
sin @ cosu 0 cos 0 0
0 0 0 cos 0
: : : 0 0

i 0 0 0 0 cos@ |

It is easy to find that the matrix (V&)!(VE) has the following expression

A 0
0 B |’
where A is the 3 x 3 matrix
sin® 6 —sinf cosfsinu sin 6 cos 0 cos u
—sinfcosfsinu  cos? 0 + sin? 6 cos? u sin? 6 sin u cos u
sin 0 cos  cos u sin®fsinucosu  cos? 6 + sin? @sin’(u)

and B is the diagonal (n — 2) x (n — 2) matrix of the form

cos?f ... 0

0 ... cos?f
The eigenvalues of the matrix (V&)*(V¢) are
MN=0,X=X=1, ==\ = cos?h.

Now it is easy to find the vectors of the singular frame. We get

eg = cosfXy+sinfsinuX; — sinfcosuXo,
er = cosuXj+sinuXs,
es = sinfXy— cosf@sinuX; + cosfcosuXo,

63=X3,...,€7L:Xn

and fi = —sinfXy+ cosfcosuX; + cosfsinuXs,
fo = —sinuX; + cosuXa,
fa=es, ..., fn=cen.
So, we have
Veo€ =0, Ve & = fi, Vey€ = fo,
Ves& = cos b fs, Ve, & = cosff,

17



Straightforward computation gives the following components for the matrix

Gz‘\j5 ) .
0 sinfcosf@ —sinfd 0 ... O
—cosf 0 —sinf 0 ... O
—cosf —sinfcosb 0 0 ... 0
—cosf —sinf —sinf 0 ... O
| —cosf —sinf —sinf 0 ... 0 |

As all \; are constants, we have

(A1 +X)Gip + (N — M) (R(er, €)€, fi)

+1«/1+)\§Z 1+ X2

Hl\ =

1 1+ X)Gip+ N — (& er) |
(n+1)Vv2 ; Gin Jrz 1+ cos?6 ] N
1

[0—1—(71—2) (1—|—cos€sm€+ (cosf — l)sme] _

1+ cos?6

(n+1)v2

n—2+2sinf cos b
n+1 14+ cos26

Analogously, we get

Z (A2 +X)Gip2 + (A — X2)(R(e2, )¢, fi) _
n+1) ~/1 + A3 < 1+ A2

1 : (L A)Gap + i = DG ea)]

(n+1)Vv2 iz::o(_Gﬂ?) * ; 1+ cos?6 N

V2

H2| ==

[2sin9—|— (n—2) (14 cosf)sinf + (cos — 1)sm900$9} _

2(n+1) 1+ cos? 6
. . 2 .
V2 2Sin9+(n_2)sm9—|—smﬁcos 6 :n\/§sm0.
2(n+1) 1+ cos?0 2(n+1)

and H, =0 for all o > 3.
n
A similar but more complicated computation shows that there exist a family
of vector fields of constant mean curvature on the Lobachevsky space. Namely,
let & be a vector field given by

& = cos Xy + sin b cos au Xy + sin 0 sin au X, (24)

where a and 6 are constants and the frame Xo, X1,...,X,, is chosen as above.
Then the following statement is true.

18



Proposition 3.6.3 The unit vector field which is given by (24) with respect to
the frame (22) on the Lobachevsky (n + 1) - space with the metric

d82 _ du2 4 eQu[(dvl)Q N (dvn)Q],

s a field of constant mean curvature. Namely, we have

V/2sin 0 cos 6 1—a? n—2
Hl‘: . 2 + 2 )
n+1 14 cos?26+a?sin“fd 1+ cos?6
ansin 6
| (n—l—1)\/1—i—cosQQ—&—aQsinZQ7
H{,| ZO g 2 3

The proof is based on the fact that the singular values of (V&) are the

following constants:

M =1, =Vcos20+a?sin®0,\3 = ... =\, = cosb.
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